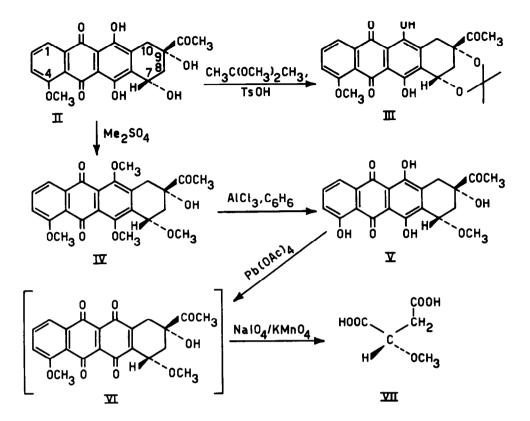

THE TOTAL ABSOLUTE CONFIGURATION OF DAUNOMYCIN

F. Arcamone, G. Cassinelli, G. Franceschi, P. Orezzi Istituto Bicerche Farmitalia, Milan, Italy and

R. Mondelli

Istituto di Chimica del Politeonico, Milan, Italy^{a)} (Received in UK 22 April 1968; accepted for publication 29 April 1968)

In the preceding paper ¹ we have reported the structure of daunomycin, an antitumor antibiotic which has been proved active in acute leukemias and neuroblastoma in children.² The present report announces the total absolute configuration of daunomycin as represented in I,a consequence of arriving at specifications ³ for all six asymmetric centers, <u>i.e.</u> 7(S), 9(S), 1'(R), 3'(S), 4'(S), 5'(S).



Daunomycinone trimethylether ⁴ (IV) was treated with aluminum chloride in benzene to give 7-0-methyl-desmethyldaunomycinone (V), mp 215-217°, $\overset{(b)}{}[\alpha]_{D}$ + 142° (chloroform), one OCH₃, same electronic spectrum in methanol as helminthosporin (1,4,5-trihydroxyanthraquinone chromophore); ^{c)} tetraacetate (acetic anhydride and pyridine) $C_{29}H_{26}O_{18}$, mp 238-240°,

b) See foctnote 3 in ref. 4.

c) The 60 Mc nmr spectrum of V shows: aliphatic OCH, at $\cancel{0}$ 3.62; COCH, at 2.42; three strongly chelated hydroxyls at 13.50, 12.98, 12.22; aromatic H₁ (7.80), H₂ (7.67), H₃ (7.26), J_{1,2}=J_{2,3}=7.8, J_{1,3}=1.8 c.p.s.; one alcoholic hydroxyl at 5.02; CH₂-10, $\cancel{0}_{10A} = 3.17$, $\cancel{0}_{1CB} = 2.95$, $J_{AB} = 19.2$, $4 \sim J_{10A,8B} = 1$ c.p.s.; CH₂-8 and H-7 giving an ABX pattern: $\cancel{0}_{8A} = 1.94$, $\cancel{0}_{8B} = 2.42$, $\cancel{0}_7 = 4.85$ (H_X), $J_{AB} = 15.0$, $J_{AX} = 3.4$, $J_{BX} = 2.5$, $4 \sim \sqrt{3}_{8B,10A} = 1$.

a) Centro del C.N.R. per la chimica delle sostanze organiche naturali.

 $\left[\alpha\right]_{D}$ + 6° (chloroform). Oxidation of V with lead tetraacetate in acetic acid gave a yellow product which showed an electronic spectrum in chloroform typical of an anthradiquinone derivative (VI) and which readily was reconverted to V by reducing agents. ⁵ This product was recovered by freeze-drying the reaction mixture and, without isolation, subjected to further oxidation by means of the periodate-permanganate mixture ⁶ to give, after separation of the ether-soluble acid reaction products by preparative paper chromatography of the ammonium salts, S (-)-methoxysuccinic acid (VII), mp 89° (from benzene), $\left[\alpha\right]_{D}$ -56° (acetone), identified by direct comparison with a synthetic sample.⁷ Accordingly, configuration (S) is established for C-7. On the other hand C-9 was configurationally related to C-7 by the formation of the isopropylidene derivative III, mp 224-226°, $\left[\alpha\right]_{D}$ + 220° (chloroform), diacetate C₂₈H₂₆O₁₀, mp 153-155°, $\left[\alpha\right]_{D}$ + 205° (chloroform), on treatment of daunomycinone (II) with 2,2-dimethoxypropane and <u>p</u>-toluensulfonic acid in dioxane. The cis configuration of the C-7 and C-9 hydroxyls allows definition of the absolute stereo-chemistry at C-9 as (S).

No.30

Our formulation of daunosamine as 3-amino-2,3,5-trideoxy-L-lyxohexose,⁸ establishing the absolute configuration at C-3', C-4', C-5' as 3'(S), 4'(S), 5'(S), has been unequivocally supported by the stereospecific synthesis of derivatives of the D-enantiomer ^{9a} and of daunosamine itself. ^{9b} The configuration at C-1', <u>i.e.</u> the stereochemistry of the glycosidic linkage, is now deduced from the 100 Mc nmr spectrum of N-acetyldaunomycin (VIII), mp 180°, $[\alpha]_D$ + 228° (c 0.1, chloroform), prepared on treatment of dauno with acetic anhydride in acetone.

All the protons of VIII, assigned by decoupling experiments, are listed in fig. 1, together with the coupling constants values. ^{d)} H-1' is a double doublet of 1.5 and 3.0-3.5 c.p.s. that collapses to a singlet on irradiation at 0.85 (CH₂-2', fig. 1a); ^{e)} the sum of the coupling constant $(|J_{1'eq}, 2'eq + J_{1'eq}, 2'ax| = 5.0-5.5$ c.p.s.) excludes diaxial interaction, thus proving the equatorial orientation of the anomeric proton. H-3', overlapped by H-5' quartet, gives a broad absorption at 0.4.2; the width of 28 c.p.s., as measured in decoupling conditions of H-5', is reduced to 22 c.p.s. on irradiation of NH (fig. 1c and 1d ^{f)}); it follows that H-3' must be axial. ^{g)} H-4' is a broad signal because of coupling with the C-4' hydroxy1, ^{h)} and sharpens on irradiation at 0.4.13 (fig. 1e); it becomes a double doublet (2.5 and ca 1 c.p.s.) after exchange with D₂0. H-5' is a double quartet with $J_{4',5'} = 1.0-1.5$ and $J_{\text{Ke},\text{H-5'}} = 6.5$ c.p.s. H-4' is deduced to be equatorial from the value of $J_{3',4'}$. The orientations of H-3' and H-4' dictate a 1C conformation, and consequently, together with equatorial H-1', the α -glycoside structure for VIII. The absolute stereochemistry at C-1' is therefore defined as (R).

The remaining aglycone protons, extra the methyl absorption, are: two strongly chelated phenolic hydroxyls ($\int 13.86$ and 13.13); one slightly hydrogen-bonded alcoholic hydroxyl ($\int 4.41$); H-7, a double doublet centered at $\int 5.10$, that sharpens on irradiation at $\int 2.19$ (fig. 1b); H-8A and H-8B, which are discovered at $\int 2.09$ and 2.29 on decoupling of H-7 (fig. 1f); CH₂-10, an AB quartet the half part of which at $\int 3.21$ shows a long-range coupling of call c.p.s. with one of the protons at C-8. as already found in daunomycinone trimethylether. ⁱ⁾

g) See footnote 17 in ref. 8.

i) See footnote 10 in ref. 4.

d) See footnote i) in ref. 1.

e) The two protons at C-2' show similar chemical shift; the center of the pattern is found at 0.85.

f) Recorded in different scale and in pyridine-d₅ solution.

h) In DESO-d, C-4' OH is a doublet of 6.0 c.p.s. at 54.63, whereas C-9 OH is a sharp singlet at 55.39.

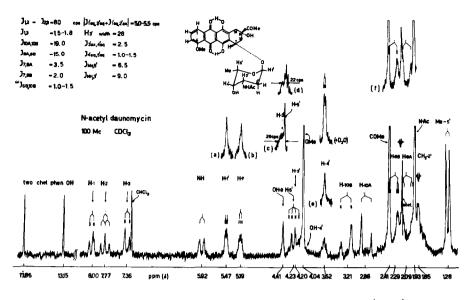


Figure 1. The nmr spectrum of N-acetyldaunomycin (VIII)

Studies concerning the conformation of the cyclohexene ring of the aglycone moiety are in progress.

REFERENCES

- 1. F. Arcamone, G. Franceschi, P. Orezzi, S. Penco and R. Mondelli, <u>Tetrahedron Letters</u>,
- C. Tan, H. Tasaka, K. Yu, M. L. Murphy, and D. A. Karnofsky, <u>Cancer</u>, 20, 333 (1967);
 Cl. Jacquillat, M. Weil, Y. Najean, J. Tanzer, P. Lortholary, M. Boiron, and Jean Bernard, <u>Arzneim. Forsch.</u>, 17, 955 (1967). For a recent review concerning the pharmacological and biochemical properties of daunomycin (rubidomycin) see A. Di Marco, in "<u>Antibiotics</u>", D. Gottlieb and P. D. Shaw, Ed., Springer Verlag, Berlin, Germany, vol. I, p. 190 (1967).
- 3. R. S. Cahn, C. K. Ingold, and V. Prelog, Experientia, 12, 81 (1956).
- F. Arcamone, G. Franceschi, P. Orezzi, G. Cassinelli, W. Barbieri, and R. Mondelli, J. Am. Chem. Soc., 86, 5334 (1964).
- Dimroth and E. Schultze, <u>Ann.</u>, <u>411</u>, 345 (1916); H. Hartmann and E. Lorenz, Z. Naturforsch., <u>74</u>, 360 (1952).
- 6. R. V. Lemieux and E. von Rudloff, Can. J. Chem., 33, 1711 (1955).
- 7. G. Fodor and F. Sóti, J. Chem. Soc., 6830 (1965).
- F. Arcamone, G. Cassinelli, P. Orezzi, G. Franceschi, and R. Mondelli, J. <u>Am. Chem.</u> <u>Soc.</u>, 86, 5335 (1964).
- 9. (a) A. C. Richardson, <u>Chem. Comm.</u>, 627 (1965); (b) J. P. Marsh, Jr., C. W. Mosher, E. M. Acton, and L. Goodman, <u>ibid</u>., 973 (1967). A new preparation of N,O-diacetyl-αdaunosaminide, free from the β-anomer, showed mp 188-189°, [α]_D -202° (chloroform), thus eliminating the discrepancy between the physical constants given by us for the derivative of natural daunosamine⁶ and those described for the synthetic compound.